An Augmented Chart Data Structure with Efficient Word Lattice Parsing Scheme In Speech Recognition Applications
نویسندگان
چکیده
In this paper, an augmented chart data structure with efficient word lattice parsing scheme in speech recognition applications is proposed. The augmented chart and the associated parsing, algorithm can represent and parse very efficiently a lattice of word hypotheses produced in speech recognition with high degree of lexical ambiguity .without changing the fundamental principles of chart parsing. Every word !attice can be mapped to the augmented chart with the ordering and connection relation among word hypotheses being well preserved in the augmented chart. A jump edge is defined to link edges representing word hypotheses physically separated but practically possible to be connected. Preliminary experimental results show that with the augmented chart parsing all possible constituents o f the input word lattice can be constructed and no constituent needs to be built more than once. This will reduce the computation complexity significantly especially when serious lexical ambiguity exists in the input word lattice as in many speech recognition problems. This augmented chart parsing is thus a very useful and efficient approach to language processing problems in speech recognition applications.
منابع مشابه
A Preference-first Language Processor Integrating the Unification Grammar and Markov Language Model for Speech Recognition Applications
A language processor is to find out a most promising sentence hypothesis for a given word lattice obtained from acoustic signal recognition. In this paper a new language processor is proposed, in which unification granunar and Markov language model are integrated in a word lattice parsing algorithm based on an augmented chart, and the island-driven parsing concept is combined with various prefe...
متن کاملLattice Parsing to Integrate Speech Recognition and Rule-Based Machine Translation
In this paper, we present a novel approach to integrate speech recognition and rulebased machine translation by lattice parsing. The presented approach is hybrid in two senses. First, it combines structural and statistical methods for language modeling task. Second, it employs a chart parser which utilizes manually created syntax rules in addition to scores obtained after statistical processing...
متن کاملHead-Driven Parsing for Word Lattices
We present the first application of the head-driven statistical parsing model of Collins (1999) as a simultaneous language model and parser for largevocabulary speech recognition. The model is adapted to an online left to right chart-parser for word lattices, integrating acoustic, n-gram, and parser probabilities. The parser uses structural and lexical dependencies not considered by ngram model...
متن کاملA general algorithm for word graph matrix decomposition
In automatic speech recognition, word graphs (lattices) are commonly used as an approximate representation of the complete word search space. Usually these word lattices are acyclic and have no a-priori structure. More recently a new class of normalized word lattices have been proposed. These word lattices (a.k.a. sausages) are very efficient (space) and they provide a normalization (chunking) ...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990